The Annihilation Theorem for the Completely Reducible Lie Superalgebras
نویسندگان
چکیده
A well known theorem of Duflo claims that the annihilator of a Verma module in the enveloping algebra of a complex semisimple Lie algebra is generated by its intersection with the centre. For a Lie superalgebra this result fails to be true. For instance, in the case of the orthosymplectic Lie superalgebra osp(1, 2), Pinczon gave in [Pi] an example of a Verma module whose annihilator is not generated by its intersection with the centre of universal enveloping algebra. More generally, Musson produced in [Mu1] a family of such ”singular” Verma modules for osp(1, 2l) cases. In this article we give a necessary and sufficient condition on the highest weight of a osp(1, 2l)-Verma module for its annihilator to be generated by its intersection with the centre. This answers a question of Musson. The classical proof of the Duflo theorem is based on a deep result of Kostant which uses some delicate algebraic geometry reasonings. Unfortunately these arguments can not be reproduced in the quantum and super cases. This obstruction forced Joseph and Letzter, in their work on the quantum case (see [JL]), to find an alternative approach to the Duflo theorem. Following their ideas, we compute the factorization of the Parthasarathy– Ranga-Rao–Varadarajan (PRV) determinants. Comparing it with the factorization of Shapovalov determinants we find, unlike to the classical and quantum cases, that the PRV determinant contains some extrafactors. The set of zeroes of these extrafactors is precisely the set of highest weights of Verma modules whose annihilators are not generated by their intersection with the centre. We also find an analogue of Hesselink formula (see [He]) giving the multiplicity of every simple finite dimensional module in the graded component of the harmonic space in the symmetric algebra.
منابع مشابه
Annihilation Theorem and Separation Theorem for Basic Classical Lie Superalgebras
In this article we prove that for a basic classical Lie superalgebra the annihilator of a strongly typical Verma module is a centrally generated ideal. For a basic classical Lie superalgebra of type I we prove that the localization of the enveloping algebra by a certain central element is free over its centre.
متن کاملLocally finite basic classical simple Lie superalgebras
In this work, we study direct limits of finite dimensional basic classical simple Lie superalgebras and obtain the conjugacy classes of Cartan subalgebras under the group of automorphisms.
متن کاملOn generalized reduced representations of restricted Lie superalgebras in prime characteristic
Let $mathbb{F}$ be an algebraically closed field of prime characteristic $p>2$ and $(g, [p])$ a finite-dimensional restricted Lie superalgebra over $mathbb{F}$. It is showed that anyfinite-dimensional indecomposable $g$-module is a module for a finite-dimensional quotient of the universal enveloping superalgebra of $g$. These quotient superalgebras are called the generalized reduced enveloping ...
متن کاملThe analogs of Riemann and Penrose tensors on supermanifolds
The Spencer cohomology of certain Z-graded Lie superalgebras are completely computed. This cohomology is interpreted as analogs of Riemann and Penrose tensors on supermanifolds. The results make it manifest that there is no simple generalization of Borel-Weil-Bott’s theorem for Lie superalgebras.
متن کاملUniversal Central Extension of Current Superalgebras
Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras are very impo...
متن کامل